91ÊÓƵ

Search within:

Yoon-Seok Choi

Yoon-Seok Choi
Associate Director of Research
CORR 136
Institute for Corrosion and Multiphase Technology

Journal Article, Academic Journal (52)

  • Kondo, K., Choi, Y., Nesic, S. (2022). Effect of a Small Amount of Cr and Mo on Aqueous CO2 Corrosion of Low-Alloyed Steel and Formation of Protective FeCO3 in Near-Saturation Condidtions. 1. Corrosion Journal; 79: 97-110.
  • Fajardo, V., Eslami, M., Choi, Y., Brown, B., Nesic, S. (2021). Influence of acetic acid on the integrity and protectiveness by an iron carbonate (FeCO3) corrosion product layer . 1. Corrosion Journal; 77: 99 - 111.
  • Xiang, Y., Xu, M., Choi, Y. (2017). State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models. Corrosion Engineering, Science and Technology; 1–25.
  • Choi, Y., Hassani, S., Nam Vu, T., Nesic, S., Abas, A. (2016). Effect of H2S on the Corrosion Behavior of Pipeline Steels in Supercritical and Liquid CO2 Environments. Corrosion; 72: 999.
  • Xiang, Y., Choi, Y., Yang, Y., Nesic, S. (2015). Corrosion of carbon steel in MDEA-based CO2 capture plant under regenerator condition: Effect of O2 and heat-stable salts. Corrosion; 71: 30.
  • Sim, S., Cole, I., Choi, Y., Birbilis, N. (2014). A review of the protection strategies against internal corrosion for the safe transport of supercritical CO 2 via steel pipelines for CCS purposes. International Journal of Greenhouse Gas Control; 29: 185–199.
  • Choi, Y., Farelas, F., Nesic, S., Magalhaes, A., de Azevedo Andrade, C. (2014). Corrosion behavior of deep water oil production tubing material under supercritical CO2 environment: part 1—effect of pressure and temperature. 1. Corrosion; 70: 38–47.
  • Farelas, F., Choi, Y., Nesic, S., Magalhaes, A., de Azevedo Andrade, C. (2014). Corrosion Behavior of Deep Water Oil Production Tubing Material Under Supercritical CO2 Environment: Part 2—Effect of Crude Oil and Flow. 2. Corrosion; 70: 137–145.
  • Xiang, Y., Choi, Y., Yang, Y., Nesic, S. (2014). Corrosion of carbon steel in MDEA-based CO2 capture plants under regenerator conditions: effects of O2 and heat-stable salts. 1. Corrosion; 71: 30–37.
  • Esmaeely, S., Choi, Y., Young, D., Nesic, S. (2014). Effect of calcium on the formation and protectiveness of an iron carbonate layer in CO2 corrosion. 5. Materials Performance; 53: 54–59.
  • Xiang, Y., Yan, M., Choi, Y., Young, D., Nesic, S. (2014). Time-dependent electrochemical behavior of carbon steel in MEA-based CO 2 capture process. International Journal of Greenhouse Gas Control; 30: 125–132.
  • Hassani, S., Vu, T., Rosli, N., Esmaeely, S., Choi, Y., Young, D., Nesic, S. (2014). Wellbore integrity and corrosion of low alloy and stainless steels in high pressure CO 2 geologic storage environments: An experimental study. International Journal of Greenhouse Gas Control; 23: 30–43.
  • Navabzadeh Esmaeely, S., Choi, Y., Young, D., Nesic, S. (2013). Effect of calcium on the formation and protectiveness of iron carbonate layer in CO2 corrosion. 9. Corrosion; 69: 912–920.
  • Nam, T., Kim, J., Choi, Y. (2013). Electrochemical hydrogen discharge of high-strength low alloy steel for high-pressure gaseous hydrogen storage tank: effect of discharging temperature. 2. International Journal of Hydrogen Energy; 38: 999–1003.
  • Choi, Y., Duan, D., Jiang, S., Nesic, S. (2013). Mechanistic modeling of carbon steel corrosion in a methyldiethanolamine (MDEA)-based carbon dioxide capture process. 6. Corrosion; 69: 551–559.
  • Choi, Y., Young, D., Nesic, S., Gray, L. (2013). Wellbore integrity and corrosion of carbon steel in CO 2 geologic storage environments: a literature review. International Journal of Greenhouse Gas Control; 16: S70–S77.
  • Farelas, F., Choi, Y., Nesic, S. (2012). Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide. 3. Corrosion; 69: 243–250.
  • Yoo, Y., Nam, T., Choi, Y., Kim, J., Chung, L. (2011). A galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: laboratory tests to determine the cathodic protection and stray-current. 4. Metals and Materials International; 17: 623–629.
  • Choi, Y., Nesic, S. (2011). Determining the corrosive potential of CO 2 transport pipeline in high pCO 2–water environments. 4. International Journal of Greenhouse Gas Control; 5: 788–797.
  • Choi, Y., Nesic, S., Ling, S. (2011). Effect of H 2 S on the CO 2 corrosion of carbon steel in acidic solutions. 4. Electrochimica Acta; 56: 1752–1760.
  • Choi, Y., Nesic, S., Young, D. (2010). Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2- water environments. 23. Environmental science & technology; 44: 9233–9238.
  • Yoo, Y., Choi, Y., Kim, J., Park, Y. (2010). Effects of Ce, La and Ba addition on the electrochemical behavior of super duplex stainless steels. 4. Corrosion Science; 52: 1123–1129.
  • Choi, Y., Kim, J. (2009). Determination of cathodic protection potential criteria for thermally insulated pipeline in synthetic groundwater. 2. Corrosion; 65: 88–95.
  • Choi, Y., Kim, J., Kim, Y., Huh, J. (2008). Corrosion characteristics of coated automotive parts subjected to field and proving ground tests. 5. International Journal of Automotive Technology; 9: 625–631.
  • Choi, Y., Kim, J., Koo, J. (2007). A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 3—Correlation of Probe Current to Cathodic Protection and Stray Current. 10. Corrosion; 63: 951–957.
  • Choi, Y., Kim, J., Park, Y., Park, J. (2007). Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3 C–14Cr–3Mo martensitic stainless steel. 1. Materials Letters; 61: 244–247.
  • Ganesan, P., Choi, Y., Kumaraguru, S., Popov, B. (2007). Development of Corrosion-Resistant Silica Coatings on Surface Modified Zinc-Coated Steel. J. Appl. Surf. Finish; 2: 20–28.
  • Ayyadurai, S., Choi, Y., Ganesan, P., Kumaraguru, S., Popov, B. (2007). Novel PEMFC cathodes prepared by pulse deposition. 10. Journal of the Electrochemical Society; 154: B1063–B1073.
  • Choi, Y., Shin, D., Kim, J. (2007). Sacrificial anode cathodic protection of aluminum-coated steel for automotive mufflers. 6. Corrosion; 63: 522–528.
  • Choi, Y., Yoo, Y., Kim, J., Kim, S. (2006). A comparison of the corrosion resistance of Cu–Ni–stainless steel multilayers used for EMI shielding. 6. Surface and Coatings Technology; 201: 3775–3782.
  • Choi, Y., Kim, J., Yang, S. (2006). A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 2—Correlation of Sensor Output to Actual Corrosion Damage of Pipeline in Soil and Tap Water Environments. 6. Corrosion; 62: 522–532.
  • Choi, Y., Kim, J., Lee, K. (2006). Corrosion behavior of steel bar embedded in fly ash concrete. 7. Corrosion Science; 48: 1733–1745.
  • Choi, Y., Kim, J. (2005). A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 1—Electrochemical Tests to Determine the Correlation of Probe Current to Actual Corrosion Damage in Synthetic Groundwater. 3. Corrosion; 61: 293–301.
  • Park, Z., Choi, Y., Kim, J., Chung, L. (2005). Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structure: Part 2. Laboratory electrochemical testing of sensors in concrete. 9. Cement and concrete research; 35: 1814–1819.
  • Choi, Y., Shim, J., Kim, J. (2005). Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water. 1. Journal of alloys and compounds; 391: 162–169.
  • Choi, Y., Shim, J., Kim, J. (2004). Corrosion behavior of low alloy steels containing Cr, Co and W in synthetic potable water. 1. Materials Science and Engineering: A; 385: 148–156.
  • Chung, M., Choi, Y., Kim, J., Kim, Y., Lee, J. (2004). Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. 2. Materials Science and Engineering: A; 366: 282–291.
  • Choi, Y., Chung, M., Kim, J. (2004). Effects of cyclic stress and insulation on the corrosion fatigue properties of thermally insulated pipeline. 1. Materials Science and Engineering: A; 384: 47–56.
  • Ahn, S., Yoo, J., Choi, Y., Kim, J., Han, J. (2003). A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method. 6. Corrosion Science and Technology; 2: 289–295.
  • Ahn, S., Yoo, J., Choi, Y., Kim, J., Han, J. (2003). Corrosion behavior of PVD-grown WC–(Ti 1- x Al x) N films in a 3.5% NaCl solution. 2. Surface and Coatings Technology; 162: 212–221.
  • Kim, J., Choi, Y., Yeo, J., Kim, S., Kim, Y., Joo, J. (2003). Effect of aluminum on the corrosion characteristics of Mg-4Ni-xAl alloys. 3. Corrosion; 59: 228–237.
  • Shim, J., You, S., Choi, Y., Kim, J., Yoo, J. (2003). Effects of Alloy Elements Cr, Co and W on the Corrosion Behavior of Low Carbon Steel in Synthetic Seawater. 12. JOURNAL-KOREAN INSTITUTE OF METALS AND MATERIALS; 41: 909–915.
  • Kim, J., Choi, Y., Lee, H., Chung, W. (2003). Effects of flow velocity, pH, and temperature on galvanic corrosion in alkaline-chloride solutions. 2. Corrosion; 59: 121–129.
  • Park, Z., Choi, Y., Kim, J., Boo, J. (2003). Electrochemical reliability of plasma-polymerized cyclohexane films deposited on copper in microelectronic devices. 13. Journal of materials science letters; 22: 945–947.
  • Choi, Y., Kim, J. (2003). Stress corrosion cracking and hydrogen embrittlement cracking of welded weathering steel and carbon steel in a simulated acid rain environment. 12. Materials science and technology; 19: 1737–1745.
  • You, S., Choi, Y., Kim, J., Oh, H., Chi, C. (2003). Stress corrosion cracking properties of environmentally friendly unleaded brasses containing bismuth in Mattsson’s solution. 1. Materials Science and Engineering: A; 345: 207–214.
  • Ahn, S., Choi, Y., Kim, J., Han, J. (2002). A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method. 2. Surface and Coatings Technology; 150: 319–326.
  • Choi, Y., Kim, J., Kim, S., Kim, Y. (2002). Aqueous corrosion characteristics of Mg–4Ni–xAl alloys in acid–chloride solution. Magnesium Technology; 277–282.
  • Choi, Y., Kim, J. (2002). Investigation of passivity and its breakdown on Fe 3 Alî—¸ Crî—¸ Mo intermetallics in thiosulfate–chloride solution. 1. Materials Science and Engineering: A; 333: 336–342.
  • Ahn, S., Yoo, J., Choi, Y., Kim, J., Han, J. (2002). The Corrosion Behabior of PVD-Grown Wc-(Ti1-xAlx) N Films Multilayers in a 3.5% NaCl Solution. Surface Engineering: Science and Technology II; 347–356.
  • Choi, Y., Ahn, S., Kim, J., McKamey, C. (2001). Effect of chromium on the corrosion behavior of iron aluminides in thiosulfate-chloride solution. 23. Journal of materials science; 36: 5575–5580.
  • Choi, Y., Kim, J. (2000). Aqueous corrosion behavior of weathering steel and carbon steel in acid-chloride environments. 12. Corrosion; 56: 1202–1210.

Conference Proceeding (15)

  • Choi, Y., Hassani, S., Nam Vu, T., Nesic, S., Abas, B., Zaki, A., Nor, A., Suhor, M., others, . (2017). Corrosion Inhibition of Pipeline Steels under Supercritical CO2 Environment. CORROSION 2017.
  • Rosli, N., Choi, Y., Nesic, S., Young, D. (2016). Corrosion of UNS G10180 Steel in Supercritical and Subcritical CO2 with O2 as a Contaminant. CORROSION 2016.
  • Rosli, N., Choi, Y., Young, D., others, . (2014). Impact of Oxygen Ingress in CO 2 Corrosion of Mild Steel. CORROSION 2014.
  • Duan, D., Choi, Y., Jiang, S., Nesic, S. (2013). Corrosion Mechanism of Carbon steel in MDEA-Based CO2 Capture Plants. 51313-02345. CORROSION 2013.
  • Farelas, F., Choi, Y., Nesic, S., others, . (2012). Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel. CORROSION 2012.
  • Choi, Y., Nesic, S., Duan, D., Jiang, S., others, . (2012). Mechanistic Modeling of Carbon Steel Corrosion in a MDEA-Based CO2 Capture Process. CORROSION 2012.
  • Huang, J., Brown, B., Choi, Y., Nesic, S. (2011). Prediction of Uniform CO2 Corrosion of Mild Steel Under Inert Solid Deposits. CORROSION 2011.
  • Huang, J., Brown, B., Choi, Y., Kinsella, B., Nesic, S. (2011). Study of Under Deposit CO2 Corrosion of Mild Steel Using Electrochemical Techniques. 15. 219th ECS Meeting; 1063–1063.
  • Mohamed, M., Nor, A., Suhor, M., Singer, M., Choi, Y., Nesic, S. (2011). Water chemistry for corrosion prediction in high pressure CO2 environments. CORROSION 2011; 2: 2.
  • Choi, Y., Nesic, S. (2009). Corrosion behavior of carbon steel in supercritical CO2-water environments. CORROSION 2009.
  • Ganesan, P., Choi, Y., Kumaraguru, S., Popov, B. (2007). Preparation, Corrosion Characteristics and Hydrogen Permeation Properties of Zn-Ni-SiO2 Coatings. 13. 859–859.
  • Choi, Y., Ayyadurai, S., Popov, B. (2006). Effect of Hydrophilic Layer Property on the Activity of Pulse Deposited Pt Catalyst in Pem Fuel Cells.
  • Ganesan, P., Choi, Y., Kumaraguru, S., Popov, B. (2006). Electrodeposited Zn-Sn Alloy as a Replacement for Cadmium Coatings. 16. 847–847.
  • Choi, Y., Kim, J., others, . (2004). A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines. Part 2-Laboratory Electrochemical Testing of Sensors in Soil.
  • Choi, Y., Chung, M., Kim, J., others, . (2003). A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 1-Laboratory Tests to Determine the Correlation of Probe Current to Actual Corrosion Damage.